В соответствии с определением, математическая теория игр является теорией математических моделей принятия оптимальных решений в условиях конфликта (а также в условиях неопределенности). Поэтому вопросы, связанные с оптимальным поведением сторон в конфликтах, с желательными исходами конфликтов, являются в ней основными. Непосредственных вопросов такого рода три:
1) Какими принципами оптимальности следует руководствоваться при рассмотрении конфликтов того или иного типа? Иначе говоря, в чем состоит (оптимальное) решение того или иного конфликта?
2) Реализуем ли применительно к данному классу конфликтов выбранный для него принцип оптимальности? Формально этот вопрос сводится к существованию у конфликтов из заданного класса тех решений, которые выбранным принципом квалифицируются как оптимальные.
3) В чем состоит применение выбранного принципа оптимальности к данному конфликту (или к данному классу конфликтов)? Ответом на этот вопрос должно служить нахождение решения конфликта в том же смысле слова, в каком принято говорить о нахождении решения применительно к любой математической задаче.
К сожалению, понятие оптимальности принимаемого решения значительно труднее поддается формализации, чем понятия конфликта и принятия решения. Эта задача и до сих пор — одна из самых важных в теории игр.
Так как математическая теория игр — теория моделей принятия решений, она не занимается этими решениями как психологическими или волевыми актами; не занимается она и вопросами их фактической реализации.
В рамках теории игр, принимаемые решения выступают как достаточно упрощенные и идеализированные схемы реальных явлений. При этом, разумеется, степень этого упрощения не должна превосходить известных пределов, за которыми модель уже утрачивает существенные черты явления.
То, что теория игр есть теория математических моделей, и она является разделом математики, означает, что конструируемые в ней модели являются формальными, знаковыми (а не, скажем, макетными или аналоговыми) и их формирование и средства анализа также формальны.
В частности, формально же должны вводиться и основные понятия.
Практически это означает, что эти понятия должны задаваться своими свойствами, которым тем самым придается смысл аксиом. Дальнейшее образование понятий и установление свойств может вестись уже без того, чтобы прибегать к каким-либо «интуитивным» соображениям. Сказанное отнюдь не оспаривает практической целесообразности использования интуиции, особенно как способа практической проверки формально полученных результатов.
В соответствии со сказанным при построении теории с самого начала необходимо формализовать те понятия, которые входят в ее определение: 1) конфликт, 2) принятие решения и 3) оптимальность решения.
Принимающие участие в конфликте стороны элементы некоторого абстрактного множества. Часто оказывается целесообразным считать их подмножествами некоторого универсального множества; элементы последнего принято называть игроками, а подмножества игроков, которые являются действующими сторонами в конфликте, — коалициями действия (различные коалиции действия могут пересекаться и даже содержаться одна в другой). Множество всех коалиций действия в конфликте далее будет обозначаться через Âd.
Каждая из коалиций действия К принимает некоторое решение из некоторого множества sk доступных для нее решений. Элементы множества sk называются стратегиями коалиции К.
Выбор каждой из коалиций действия некоторой стратегии определяет то, что называется исходом конфликта. При этом не обязательно, чтобы этот исход понимался как однозначно определенное детерминированное явление. Допустимо, чтобы тот или иной из этих исходов был множеством физических явлений или же случайным явлением, т.е. множеством явлений с вероятностной мерой на нем. Кроме того, некоторые комбинации выбранных коалициями действия стратегий могут оказаться несовместимыми и потому неосуществимыми. В этом случае принято считать, что конфликт не состоялся. (В применении к играм (конфликты) это может выражаться в появлении некоторой помехи, прервавшей игру (конфликты) без возможности ее продолжения).
Все исходы конфликта называются ситуациями. Из сказанного выше следует, что ситуации составляют некоторое множество S, являющееся подмножеством множества всех комбинаций стратегий коалиций действия, т.е. декартова произведения множеств стратегий.
По поводу заинтересованных в исходах конфликта сторон можно повторить почти все, сказанное в связи с коалициями действия. Их называют коалициями интересов, и они считаются элементами некоторого абстрактного множества, которое далее будет обозначаться через Âи. Коалиции интересов суть подмножества того же множества игроков, что и коалиции действия.
Манипулятор как психологический тип личности. Характеристика
личности манипулятора и манипулируемого. Причины формирования манипуляторского
типа личности
Люди, несомненно, различаются по природному дару непреднамеренного (непроизвольного) влияния на других и по подверженности психологическому влиянию.
Впервые идея о существовании манипуляторского типа личности была изложена философом и социологом, представителем Франкфуртской школы Т. Адорно, завершившим в 1950 году вместе с группой уче ...
Психологические и нейропсихологические причины неуспеваемости школьников.
В норме психическое развитие имеет сложную организацию. Развивающийся ребенок все время находится в процессе изменений не только количественных, но и качественных. При этом в самом развитии наблюдаются периоды убыстрения и замедления, а в случае затруднений - возвращение к прежним формам активности. В норме межфункциональные связи склад ...
Мозговая организация речи
Органом сознательной деятельности человека, является кора больших полушарий.
Основу современного учения о локализации функций в коре заложил французский ученый Брока П. выделивший в 1861 году двигательный центр речи. Затем немецкий психиатр К. Вернике в 1873 году обнаружил центр словесной глухоты (нарушение понимания речи).
Анализ фак ...



Разделы