Материалы » Конфликт как инструмент развития » Формально-логические модели конфликтов

Формально-логические модели конфликтов
Страница 1

В соответствии с определением, математическая теория игр является теорией математических моделей принятия оптимальных решений в условиях конфликта (а также в условиях неопределенности). Поэтому вопросы, связанные с оптимальным поведением сторон в конфликтах, с желательными исходами конфликтов, являются в ней основными. Непосредственных вопросов такого рода три:

1) Какими принципами оптимальности следует руководствоваться при рассмотрении конфликтов того или иного типа? Иначе говоря, в чем состоит (оптимальное) решение того или иного конфликта?

2) Реализуем ли применительно к данному классу конфликтов выбранный для него принцип оптимальности? Формально этот вопрос сводится к существованию у конфликтов из заданного класса тех решений, которые выбранным принципом квалифицируются как оптимальные.

3) В чем состоит применение выбранного принципа оптимальности к данному конфликту (или к данному классу конфликтов)? Ответом на этот вопрос должно служить нахождение решения конфликта в том же смысле слова, в каком принято говорить о нахождении решения применительно к любой математической задаче.

К сожалению, понятие оптимальности принимаемого решения значительно труднее поддается формализации, чем понятия конфликта и принятия решения. Эта задача и до сих пор — одна из самых важных в теории игр.

Так как математическая теория игр — теория моделей принятия решений, она не занимается этими решениями как психологическими или волевыми актами; не занимается она и вопросами их фактической реализации.

В рамках теории игр, принимаемые решения выступают как достаточно упрощенные и идеализированные схемы реальных явлений. При этом, разумеется, степень этого упрощения не должна превосходить известных пределов, за которыми модель уже утрачивает существенные черты явления.

То, что теория игр есть теория математических моделей, и она является разделом математики, означает, что конструируемые в ней модели являются формальными, знаковыми (а не, скажем, макетными или аналоговыми) и их формирование и средства анализа также формальны.

В частности, формально же должны вводиться и основные понятия.

Практически это означает, что эти понятия должны задаваться своими свойствами, которым тем самым придается смысл аксиом. Дальнейшее образование понятий и установление свойств может вестись уже без того, чтобы прибегать к каким-либо «интуитивным» соображениям. Сказанное отнюдь не оспаривает практической целесообразности использования интуиции, особенно как способа практической проверки формально полученных результатов.

В соответствии со сказанным при построении теории с самого начала необходимо формализовать те понятия, которые входят в ее определение: 1) конфликт, 2) принятие решения и 3) оптимальность решения.

Принимающие участие в конфликте стороны элементы некоторого абстрактного множества. Часто оказывается целесообразным считать их подмножествами некоторого универсального множества; элементы последнего принято называть игроками, а подмножества игроков, которые являются действующими сторонами в конфликте, — коалициями действия (различные коалиции действия могут пересекаться и даже содержаться одна в другой). Множество всех коалиций действия в конфликте далее будет обозначаться через Âd.

Каждая из коалиций действия К принимает некоторое решение из некоторого множества sk доступных для нее решений. Элементы множества sk называются стратегиями коалиции К.

Выбор каждой из коалиций действия некоторой стратегии определяет то, что называется исходом конфликта. При этом не обязательно, чтобы этот исход понимался как однозначно определенное детерминированное явление. Допустимо, чтобы тот или иной из этих исходов был множеством физических явлений или же случайным явлением, т.е. множеством явлений с вероятностной мерой на нем. Кроме того, некоторые комбинации выбранных коалициями действия стратегий могут оказаться несовместимыми и потому неосуществимыми. В этом случае принято считать, что конфликт не состоялся. (В применении к играм (конфликты) это может выражаться в появлении некоторой помехи, прервавшей игру (конфликты) без возможности ее продолжения).

Все исходы конфликта называются ситуациями. Из сказанного выше следует, что ситуации составляют некоторое множество S, являющееся подмножеством множества всех комбинаций стратегий коалиций действия, т.е. декартова произведения множеств стратегий.

По поводу заинтересованных в исходах конфликта сторон можно повторить почти все, сказанное в связи с коалициями действия. Их называют коалициями интересов, и они считаются элементами некоторого абстрактного множества, которое далее будет обозначаться через Âи. Коалиции интересов суть подмножества того же множества игроков, что и коалиции действия.

Страницы: 1 2


Сценарий
Каждый человек еще в детстве, чаще всего бессознательно, думает о своей будущей жизни, как бы прокручивает в голове свои жизненные сценарии. Повседневное поведение человека определяется его рассудком, а свое будущее он может только планировать, например, каким человеком будет его супруг (супруга), сколько в их семье будет детей и т.п. В ...

Социальная сущность девиантного поведения. Характеристика понятия «девиантное» поведение, основные его причины
Отклоняющееся поведение имеет сложную природу, обусловленную самыми разнообразными причинами и факторами. Выделим причины социальных патологий, т.к. именно они являются объектом внимания специалистов по социальной работе. Социально-экономические причины: снижения уровня жизни определенной части населения, особенно восприимчивой к этой ...

Инфантилизм
Инфантилизм (от лат. infantilis - детский) - незрелость в развитии, сохранение в физическом облике или поведении черт, присущих предшествующим возрастным этапам. Психический инфантилизм - незрелость человека, выражающаяся в задержке становления личности, при которой поведение человека не соответствует возрастным требованиям к нему. Пр ...