Материалы » Конфликт как инструмент развития » Формально-логические модели конфликтов

Формально-логические модели конфликтов
Страница 2

В теории игр множества коалиций действия и множества коалиций интересов рассматриваются как различные. Легко видеть, что в реальных конфликтах могут встречаться коалиции действия, не являющиеся коалициями интересов, и наоборот.

Рассмотрим, наконец, форму выражения заинтересованности для коалиций интересов. Эта заинтересованность проявляется в том, что каждая из этих коалиций предпочитает одни исходы конфликта другим.

Это описывается в виде некоторого отношения предпочтения — абстрактного бинарного отношения ýк на множестве всех ситуаций. Тот факт, что коалиция интересов К предпочитает ситуацию х ситуации у, обозначается как х ýк у.

Вообще говоря, никаких свойств у отношения ýк не предполагается, хотя обычно оно считается транзитивным

(т.е. из х ýк у и уýк Z следует х ýк Z).

В частности, не требуется, чтобы отношение было линейным, т.е. чтобы любые две ситуации были сравнимы друг с другом (в формальной записи для любых двух различных ситуаций х и у либо х ýк у, либо у ýк х).

Нередко отношение предпочтения задается следующим образом. На множестве ситуаций S определяется функция Hк, принимающая вещественные значения и называемая функцией выигрыша коалиции интересов К. Ее значение Нк (х) понимается как выигрыш, который коалиция К получает в ситуации х. Естественно принять, что х ýк у, если Нк (х) > Нк (у).

Итак, конфликтом (или игрой) называется система

Г= <Âd. í Sк ý к ÎÂd, S, Âи , { ý к } к ÎÂи >

где перечисленные в ломаных скобках множества и отношения связаны друг с другом, как это было описано выше. Математическая теория игр занимается изучением конфликтов (игр) именно в этом понимании.

Смешанная стратегия игрока есть вероятностное распределение на множестве его чистых стратегий.

Пусть дан конфликт (игра) Г

. Говорят, что ситуация (т.е. n-набор стратегий) (si*, s2**, ., sn *) равновесна, или что она является ситуацией равновесия, если для любого i = 1, ., п и для любого s1Î Si имеет место неравенство

.

Другими словами, ситуация равновесна, если ни один игрок не имеет никаких разумных оснований для изменения своей стратегии при условии, что все остальные игроки собираются придерживаться своих стратегий. В этом случае, если каждый игрок знает, как будут играть остальные, он имеет основание придерживаться той стратегии, которая соответствует этой ситуации равновесия; тем самым игра становится весьма устойчивой.

Не все игры имеют ситуацию равновесия. Например, игра в орлянку такой ситуации не имеет.

Если конфликт не имеет ситуаций равновесия, то обычно некоторые игроки пытаются отгадать стратегии остальных участников, сохраняя собственные стратегии в тайне. Что постоянно приводит к нестабильности в развитии взаимодействия. Это наводит на мысль (и это действительно верно), что в конфликтах с полной информацией ситуации равновесия существуют.

Страницы: 1 2 


Виды лжи
Вагин[6] и Экман[7] в своих книгах выделяют два основных вида лжи: 1. Умолчание (сокрытие правды); 2. Искажение (сообщение ложной информации). Так же выделяют разновидности лжи, такие как: сообщение правды в виде обмана и особая ложь. Рассмотрим эти формы лжи: Умолчание или сокрытие реальной информации. По мнению И. Вагина, «большин ...

Изучение проблемы школьной неуспеваемости в отечественной психологии.
Работа отечественных психологов сделала неоценимый вклад в детскую нейропсихологию. Сама возможность выявления причин трудностей обучения, связанных с нарушениями функциональных систем появилась благодаря А.Р. Лурия и его методу «синдромного анализа», где каждое нарушение описывается в синдроме других нарушений. Основываясь на их с Л.С ...

Предмет и задачи дифференциальной психологии
Сам термин "дифференциальная психология" был введен Штерном в 1900 году. Он один из первых ученых собрал современные ему представления о различиях между людьми и на основе этого разработал целую концепцию “Психология индивидуальных различий”, а затем добавил к индивидуальным различиям вопросы, связанные с групповыми различиями ...